LPMC

Partenaires

CNRS UNS
UCA



Rechercher

Sur ce site

Sur le Web du CNRS


Accueil du site > Séminaires > Année en cours > Konstantin E Dorfman

QUANTUM EFFECTS AT NANOSCALE IN DYNAMICS AND THERMODYNAMICS OF COMPLEX SYSTEMS AND THEIR DETECTION USING NONCLASSICAL LIGHT AND EXTREME WAVELENGTHS

Konstantin E Dorfman

à 14h en salle C. BROT

The progress in quantum optics utilizes a unique photon state configuration for engineering of the ultimate light-matter interactions with relatively simple material systems. It results in a broad range of photonic applications including radiation sources, quantum communication, information, computing and nanotechnology. The development of the ultrafast multidimensional nonlinear spectroscopy that has been enabled by progress in ultrafast optical technology provides a unique tool for probing complex molecules, semiconductors, nanomaterials by classical light fields. I will show how new quantum phenomena in complex systems can be studied and controlled using advances in both quantum optics and nonlinear spectroscopy. In particular I investigate how the dynamics and energy characteristics of the Quantum Heat Engines such as lasers, solar cells, nanophotonic devices and biological light harvesting complexes are affected by the quantum effects. I further demonstrate how to probe and control the dynamics of these complex systems using quantum light and reveal the information, which is not accessible by conventional classical photonics. I will finally utilize the newly developed X-ray Stimulated Raman spectroscopies to control electron transfer processes and collect information about molecular systems with the attosecond precision.